Avtobusufa.ru

Автобус УФА
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип работы двигателя реактивного самолета: как работает, устройство, виды двигателей

Принцип работы двигателя реактивного самолета: как работает, устройство, виды двигателей

Идею использования реактивной тяги, которая позволила бы преодолеть силу притяжения Земли, выдвинул в 1903 году феномен российской науки – Циолковский. Он опубликовал целое исследование на данную тему, но оно не было воспринято серьезно. Константин Эдуардович, пережив смену политического строя, потратил годы трудов, чтобы доказать всем свою правоту.

принцип работы реактивного двигателя

Сегодня очень много слухов о том, что первым в данном вопросе был революционер Кибальчич. Но завещание этого человека к моменту публикации трудов Циолковского было погребено вместе с Кибальчичем. Кроме того, это был не полноценный труд, а лишь эскизы и наброски – революционер не смог подвести надежную базу под теоретические выкладки в своих работах.

Как работает реактивный двигатель?

Его приводит в действие реактивная тяга. Для этого нужна какая-то жидкость, выталкиваемая из задней части системы и придающая ей движение вперед. Здесь работает третий закон Ньютона, который гласит: “Любое действие вызывает равное противодействие”.

У реактивного двигателя вместо жидкости применяется воздух. Он создает силу, обеспечивающую движение.

В нем используются горячие газы и смесь воздуха со сгораемым топливом. Эта смесь выходит из него с высокой скоростью и толкает самолет вперед, давая ему лететь.

Если говорить об устройстве двигателя реактивного самолета, то оно представляет из себя соединение четырех самых важных деталей:

  • компрессора;
  • камеры горения;
  • турбины;
  • выхлопа.

Компрессор состоит из нескольких турбин, которые засасывают воздух и сжимают его по мере прохождения через расположенные под углом лопасти. При сжатии температура и давление воздуха повышаются. Часть сжатого воздуха попадает в камеру горения, где смешивается с топливом и поджигается. Это увеличивает тепловую энергию воздуха.

принцип работы двигателя реактивного самолета

Горячая смесь на высокой скорости выходит из камеры и расширяется. Там она проходит через еще одну турбину с лопастями, которые вращаются, благодаря энергии газа.

Турбина соединена с компрессором в передней части двигателя, и таким образом приводит его в движение. Горячий воздух выходит через выхлоп. К этому моменту температура смеси очень высока. И еще увеличивается, благодаря эффекту Дросселирования. После этого воздух выходит из него.

Разработка самолетов с реактивным двигателем началась в 30х годах прошлого века. Англичане и немцы начали разрабатывать подобные модели. В этой гонке победили немецкие ученые. Поэтому первым самолетом с реактивным двигателем стала “Ласточка” в Люфтваффе. “Глостерский метеор” поднялся в воздух немного позднее. О первых самолетах с такими двигателями подробно рассказано в этой статье.

Двигатель сверхзвукового самолета — тоже реактивный, но уже в совершенно другой модификации.

Как работает турбонаддув в машине? [Принцип работы]

В природе не существует такой вещи, как идеальное изобретение: мы всегда можем сделать что-то лучше, дешевле, эффективнее и экологически более чистым. Возьмите двигатель внутреннего сгорания. Вы думаете, что это невероятно, что автомобиль, работающий на жидкости, может ускорить ваше путешествие из пункта А в пункт B в разы. Но всегда существует возможность создать двигатель, который будет работать быстрее, на большие расстояния, или использовать меньше топлива. Одним из способов улучшить двигатель является использование турбонаддува – пары вентиляторов, которые направляют выхлопные газы из задней части двигателя в его переднюю часть, тем самым предоставляя двигателю больше мощности. Мы все слышали о турбированных движках, но как именно это работает? Давайте рассмотрим этот вопрос подробнее!

Турбонаддув. Что это?

турбокомпрессорВы когда-нибудь видели автомобили, которые проезжали мимо вас в облаке зловонного дыма, источником которого была их выхлопная труба? Для всех является очевидным тот факт, что выхлопные газы загрязняют окружающую среду, но менее очевидным остается тот факт, что это так же и пустая трата драгоценной энергии. Выхлопные газы являются смесью горячих газов, которые выходят из двигателя на приличной скорости и вся энергия, которая в них содержится – температуры и движения (кинетическая энергия) – бесполезно рассеивается в атмосфере. Разве не было бы замечательно, если бы двигатель мог использовать энергию выхлопных газов для собственного ускорения? Именно этим и занимается турбонаддув.

Автомобильные двигатели получают свою мощность от сгорания топлива в крепких металлических емкостях, которые называются цилиндрами. Воздух поступает в каждый цилиндр, смешивается там с топливом, и сгорает, при этом происходит небольшой взрыв, который приводит в движение поршень, а тот в свою очередь приводит в движение валы и шестерни, которые вращают колеса автомобиля. Когда поршень возвращается в первоначальное положение, он выталкивает отходы воздушно-топливной смеси из цилиндров. Это и есть выхлопные газы. Количество энергии, которую может произвести автомобиль, напрямую связано с тем, как быстро он сжигает топливо. Чем больше цилиндров в двигателе и чем больше они в объеме, тем больше топлива он может сжечь каждую секунду и (по крайней мере, теоретически) тем быстрее сможет ехать автомобиль.

Читайте так же:
Как сделать виброплиту своими руками

Из урока приведенного выше мы уяснили, что одним из способов сделать автомобиль гораздо быстрее, это добавить больше цилиндров. Вот почему сверхбыстрые спортивные автомобили, как правило, оснащены восьмью или двенадцатью цилиндрами, а не четырьмя шестью, как стандартные семейные транспортные средства. Другой способ заключается в использовании турбонаддува, который нагнетает больше воздуха в цилиндры, чтобы двигатель мог сжигать топливо с большей скоростью. Турбонаддув является простой, относительно дешевой, дополнительной конструкцией, которая помогает извлечь из двигателя больше мощности. Это изобретение вошло в ТОП 10 улучшений в конструкции двигателя со времен его создания (об этом, а также о многом другом, более подробнее здесь).

Как работает турбонаддув?турбина самолета

Если вы знакомы с принципом работы реактивного двигателя, то вы на полпути к пониманию принципа работы автомобильного турбонаддува. Реактивный двигатель всасывает холодный воздух спереди, сжимает его в камере, где он сгорает с топливом, а затем выпускает горячий воздух с обратной стороны двигателя на большой скорости. Когда горячий воздух покидает двигатель, он проходит мимо турбины (которая внешне немного похожа на очень компактную металлическую лестницу), что приводит в движение компрессор (воздушный насос) в передней части двигателя. Этот компрессор толкает воздух в двигатель, чтобы сжечь топливо должным образом. Принцип работы турбонаддува в автомобиле практически точно такой же. Он использует выхлопные газы для приведения турбины в действие. Она вращает воздушный компрессор, который нагнетает дополнительный воздух в цилиндры, чтобы сжигать больше топлива каждую секунду. Вот почему автомобили с турбонаддувами обладают большей мощностью.

Как это работает на практике? Фактически турбокомпрессор – это два небольших вентилятора (так называемые лопастные колеса или газовые насосы), которые размещены на одном металлическом валу, так что оба вращаются в одну сторону. Один из этих вентиляторов, который называется турбиной, расположен на пути потоков выхлопных газов из цилиндров двигателя. Как только цилиндры выпускают горячий газ, он вращает лопасти вентилятора, что приводит в движение вал, на котором размещен вентилятор. Второй вентилятор, который называется компрессором, также начинает вращаться, так как расположен на одном валу с турбиной. Он установлен внутри воздухозаборника автомобиля, поэтому, как только он начинает вращаться, он засасывает воздух в машину и нагнетает его в цилиндры.

Но на этом этапе возникает небольшая проблема. Если вы сжимаете газ, вы повышаете его температуру. Горячий воздух имеет меньшую плотность, а это уменьшает его эффективность в помощи при сгорании топлива. Так что, было бы намного лучше, если бы воздух, поступающий из компрессора, охлаждался до того, как он попадет в цилиндры. Для того, чтобы решить эту проблему и охладить воздух, выход из турбокомпрессора проходит через теплообменник, который забирает лишнюю температуру себе и направляет ее в более подходящие места.

Существует ряд мнений, что турбины ненадежны, что они часто ломаются и требуют полной замены. Мы не совсем согласны с этим утверждением. Почему? Об этом читайте в нашей статье: Есть ли недостатки у двигателей с турбонаддувом?

Схема работы турбонаддува с картинкой

работа турбокомпрессора

Основная идея заключается в том, что выхлопные газы приводят в движение турбину (красный вентилятор), который непосредственно подключен (и питает) к компрессору (синий вентилятор), который нагнетает воздух в двигатель. Для простоты, мы показываем только один цилиндр. Давайте рассмотрим весь принцип работы пошагово.

1 . Холодный воздух поступает в воздухозаборник двигателя и направляется в компрессор.

2 . Вентилятор компрессора помогает засасывать воздух внутрь.

3 . Компрессор сжимает и нагревает поступающий воздух и выдувает его снова.

4 . Горячий, сжатый воздух из компрессора проходит через теплообменник, который охлаждает его.

5 . Охлажденный, сжатый воздух поступает в воздухозаборник цилиндра. Дополнительный кислород помогает сжигать топливо в цилиндре с большей скоростью.

6 . Так как в цилиндре сжигается больше топлива, он быстрее производит энергию и может отправлять больше мощности на колеса через поршни, валы и шестерни.

7 . Выхлопные газы из цилиндра выходят через выпускные трубы.

8 . Горячие выхлопные газы проходят мимо турбины и заставляют ее вращаться с высокой скоростью.

9 . Вращающаяся турбина установлена на том же валу, что и компрессор (на нашей картинке вал изображен оранжевым цветом). Таким образом, если вращается турбина, то и компрессор тоже.

10 . Выхлопные газы выходят из автомобиля, но при этом тратиться меньше ценной энергии, чем, если бы двигатель был без турбонаддува.

Читайте так же:
Как сделать компрессор своими руками

Турбовинтовые двигатели

Турбовинтовой двигатель, как и турбореактивный, относится к газотурбинным двигателям. И работает он почти как турбореактивный. Элементарный турбовинтовой двигатель состоит из уже знакомых нам элементов: компрессора, камеры сгорания, турбины и сопла. К ним добавляются редуктор и винт.

image

Принцип работы работы такой же, как у турбореактивного, с разницей в том, что практически вся энергия газа расходуется на турбине на вращение компрессора и на вращение винта через редуктор (здесь винт и редуктор находятся на одном валу с компрессором). Винт создаёт основную долю тяги. Оставшаяся, после турбины, часть энергии направляется в сопло, образуя реактивную тягу, но она мала, может составлять десятую часть от общей. Редуктор в этой схеме нужен для того, чтобы понизить обороты и передать момент, так как турбина может вращаться с очень высокой частотой, например, 10000 оборотов в минуту, а винту нужно только 1500. И винт достаточно тяжелый.

image
Схематичная конструкция ТВД

Но бывает и другая схема турбовинтовых двигателей: со свободной турбиной.
Её суть в том, что за обычной турбиной компрессора ставится отдельная турбина, которая механически не связана с турбиной компрессора. Такая турбина называется свободной. Связь между турбиной компрессора и свободной турбиной только газодинамическая. От свободной турбины идёт отдельный вал, на который устанавливаются редуктор с винтом. Все остальное работает так же, как и в первом случае. Большинство современных двигателей выполняют именно по такой схеме. Одним из плюсов такой схемы является возможность использования двигателя на земле, как вспомогательную силовую установку (ВСУ), не приводя винт в движение.

image
Схематичная конструкция ТВД со свободной турбиной

Хочу отметить, что не нужно смотреть на турбовинтовые двигатели как на малоэффективный пережиток прошлого. Я несколько раз слышал такие высказывания, но они неверны.
Турбовинтовой двигатель в некоторых случаях обладает наивысшим КПД, как правило, на самолетах с не очень большими скоростями (например, на 500 км/ч), притом, самолет может быть внушительных размеров. В таком случае, турбовинтовой двигатель может быть в разы выгоднее, рассмотренного ранее, турбореактивного двигателя.

На этом про турбовинтовые двигатели можно заканчивать. Мы потихоньку подошли к понятию турбовального двигателя.

Устройство реактивного двигателя

Устройство реактивного двигателя

  • компрессор, который засасывает в двигатель поток воздуха;
  • камера внутреннего сгорания, где происходит смешивание топлива с воздухом, их горение;
  • турбина – придает дополнительное ускорение потоку тепловой энергии, полученной в результате горения топлива и воздуха;
  • сопло, важнейший элемент, который преобразует внутреннюю энергию в «движущую силу» – кинетическую энергию.

Благодаря совместному взаимодействию этих элементов, на выходе реактивного двигателя образуется мощнейшая реактивная струя, придающая объектам, на которых установлен двигатель, высочайшую скорость.

Устройство реактивного двигателя

Устройство и принцип работы реактивного двигателя

Все модели двигателей семейства ГТД имеют схожее строение, а их работа основывается на вращении турбины, что и дало название всему семейству. Строение турбореактивного двигателя с одной стороны проще, чем у других видов, но с другой имеет ряд особенностей. Итак, ТРД состоит из компрессора, камеры (или нескольких камер) сгорания, турбины и сопла. Другие виды ГТД имеют еще и дополнительные валы, выполняющие определенную полезную работу, но в данном случае их нет, что и упрощает конструкцию, а также снижает вес.

Принцип работы ТРД соответствует принципу работы всех ГТД. Компрессор втягивает воздух, сжимает его и направляет в камеру сгорания. В ней воздух перемешивается с впрыснутым форсунками топливом, образуя топливный заряд, который при сгорании расширяется. Расширенные газы направляются в сторону турбины, вращая ее, а остатки неиспользованной энергии выходят через сужающееся сопло, образуя реактивную тягу, которая и является движущей силой. Турбина, вращаясь, приводит в движение компрессор, связанный с ней механически.

Теперь более подробно о каждой составляющей ТРД. Турбореактивные двигатели отличаются между собой по типу компрессоров, которые в них устанавливаются. Они могут быть осевыми, центробежными или комбинированными. В данной статье будут рассматриваться ТРД с осевым компрессором.

Элементы двигателя

Осевой компрессор

kompressor

Осевой компрессор представляет собой вал с подвижными дисками, на концах которых закреплены рабочие лопатки, называемый ротором, а между этими дисками находятся неподвижные направляющие лопатки, закрепленные на внутренней стороне корпуса, — статор. Ротор работает, как обычный вентилятор, только лопастей у него больше и скорость вращения выше. Поток воздуха, пройдя через подвижные лопатки, закручивается, и чтобы его выровнять, используется статор. Неподвижные лопатки статора тормозят воздух и придают ему нужный вектор движения, направленный вдоль оси вала. Именно поэтому компрессор и называется осевым.

Каждая пара рабочих и направляющих лопаток формирует одну ступень компрессора. Таких ступеней обычно несколько (их число может достигать 15) и расположены они одна за другой. В результате получается чередование подвижных и неподвижных лопаток, расположенных вдоль вала. Одна ступень увеличивает давление воздуха в незначительной степени, но при прохождении всех их оно достигает нужного значения. Уменьшение скорости на статоре увеличивает давление и температуру, так что на следующую ступень воздух поступает уже сжатым и нагретым. С каждой последующей ступенью давление и температура в компрессоре повышаются. Количество ступеней определяется при проектировании двигателя и зависит от требуемого значения степени сжатия в камере сгорания.

Читайте так же:
Как сварить медные провода в домашних условиях

Для получения большего значения величины давления корпус компрессора может постепенно сужаться, что дополнительно увеличивает напор внутри и контролирует осевое направление движения потока. С этой же целью ротор может иметь конусную форму, а в некоторых случаях сечение канала сужается путем комбинирования конусной формы и корпуса, и ротора.

Компрессор может быть одно- или многокаскадным. Первый тип представляет собой ротор и статор с необходимым числом ступеней. Он используется в обычных турбореактивных двигателях. Многокаскадный компрессор – это два и более узла, каждый из которых оснащен своей приводной турбиной. Его использование позволяет более точно и эффективно управлять режимами работы двигателя и настраивать их под определенную нагрузку. Такие компрессоры нашли применение как на обычных, так и на двухконтурных ТРД.

Если сравнивать осевой и цетробежный компрессоры, более эффективным считается первый. КПД осевого компрессора может достигать 90%, к тому же он более легкий и компактный и имеет большую производительность. Именно поэтому авиаконструкторы чаще отдают предпочтение именно ему.

Камера сгорания

Камера сгорания газотурбинных двигателей в основном представлена 3 типами. Камера сгорания представляющая собой «кольцо», которое охватывает корпус мотора, или же отдельные трубы, называемые жаровыми, а вот гибрид этих двух КС, так называемый трубчато-кольцевая камера сгорания использовалась в переходный момент от трубчатой КС к кольцевой КС и редко где встречается. Поверхность камеры сгорания имеет своеобразную перфорацию для эффективного сжигания топлива и воздушного охлаждения. В ней расположены форсунки, подающие топливо (в самолетах это авиационный керосин). При контакте с сжатым горячим воздухом оно воспламеняется, в результате чего образуются расширенные газы с высоким зарядом энергии.

Основная функция камеры сгорания, это подвод тепловой энергии к воздушному потоку, получаемой в результате химической реакции окисления топлива кислородом воздуха, то есть попросту его сгорания. Дополнительная энергия подводимая к потоку, проходящему через камеру сгорания в частности и всецело через двигатель, позволяет уравновесить потери, и разогнать этот поток в сопле с целью получения достаточной тяги для придания движения двигателю и как следствие, летательному аппарату.

Турбина

turbine1

Турбина – это «компрессор наоборот»: если лопасти компрессора вращаются, чтобы затягивать воздух в корпус, то лопасти турбины вращаются, потому что на них воздействуют расширенные газы. По своей структуре турбина практически не отличается от компрессора, имея неподвижные лопатки статора и подвижные ротора. Но в ее случае статор находится впереди, а ротор – за ним (сначала поток газов выпрямляется, а затем попадает на рабочие лопатки). Ступеней у турбины меньше, обычно их количество не более 4-х, а то и меньше; есть даже одноступенчатые модели. Работает турбина следующим образом: из камеры сгорания расширенные газы попадают на рабочие лопатки и вращают их. Поскольку основная и единственная задача турбины ТРД – вращение компрессора, ей достаточно небольшого количества ступеней. Излишек энергии, не потраченный на вращение турбинного ротора, в прямом смысле слова «вылетает в трубу», то есть в сопло, обеспечивая реактивную тягу.

Сопловой аппарат

Сопла ТРД тоже бывают разными. Они могут иметь переменное сечение, сужаясь к выходу, а могут сначала сужаться, а затем расширяться. В некоторых моделях самолетов можно регулировать сечение сопла и направление тяги, могут быть устройство реверса или отклонения вектора тяги, различные шумопоглощающие устройства или приспособления для снижения инфракрасной заметности. Сопловой аппарат это так же и форсажная камера.

Основная задача сопла — это формирования необходимых параметров потока газа, выходящего из двигателя. Срабатывание энергии газа в поступательную энергию двигателя и движение самолета. Сопла для реактивных двигателей бывают 2 видов, в зависимости от расчетной скорости полета самолета. Для двигателей самолетов, летающих с дозвуковой скоростью применяют сопло со сужающимся сечением к срезу сопла. Сопло для двигателей сверхзвуковых самолетов применяют уже с расширяющимся сечением к срезу сопла, так называемое сопло Лаваля.

sopla_all

1 — обычное жесткое сужающееся сопло, 2 — сопло Витошинского, 3 — сопло Лаваля

Читайте так же:
Как сделать передний мост на т 25

В современной авиации из соображений наибольшей оптимальности работы двигателей на всех режимах полета самолета (максимального приближения к расчетному режиму), то есть обеспечения большой тяги с минимальными потерями, сверхзвуковые сопла делаются регулируемыми.

reg_sopl

Система управления двигателем

Несмотря на кажущуюся простоту конструкции, турбореактивный двигатель – это сложная система, которой практически полностью управляет «умная» автоматика. Пилот определяет нагрузку с помощью одного только рычага, тогда как многочисленные датчики и регуляторы выполняют остальную работу, настраивая двигатель на нужный режим работы.

Загадка форсажного пламени: как работают двигатели истребителей

Загадка форсажного пламени: как работают двигатели истребителей

Последнюю букву в слове «форсаж» ведущий произносит отчетливо. Это знак. Оба летчика одновременно ровным движением переводят ручки управления двигателями до упора вперед, в положение «полный форсаж».

Свист двигателей разрастается в рев и без пауз переходит в надрывный грохот. Из сопел вырастают длинные, почти с сам самолет, струи бело-розового форсажного пламени. Истребители начинают разбег под действием резко выросшей тяги. Большая продольная перегрузка делает рост скорости стремительным. Потому разбег и начинают синхронно, чтобы задний самолет не догнал передний и не отстал от него: здесь решают метры и доли секунды.

Задрав носы и лизнув длинными языками форсажного огня бетонку, пара отрывается от полосы и стремительно поднимается в ночное небо. Грохот удаляется, в небо уходят две звездочки с огненными хвостами. Внезапно они гаснут. Через пару секунд отдаленный грохот резко смолкает. Форсаж выключен. Истребители продолжают набор высоты на максимальном режиме двигателей.

Форсаж

Мгновенное усилие

Форсаж – усиленный режим работы двигателя. Слово происходит от французского forçage – «усиление, принуждение, форсирование». Форсаж дает большое, почти вдвое, увеличение тяги двигателя, уже работающего на максимальном режиме. Много тонн добавочной форсажной тяги, которая позволяет быстро разогнаться при взлете, поддерживать скорость в интенсивных маневрах, развивать сверхзвуковую скорость и догонять цель для атаки.

В форсажном двигателе между турбиной и реактивным соплом вставлена форсажная камера – большая труба с топливными форсунками спереди. На форсаже в камере сжигаются добавочные килограммы топлива. При их сгорании сильно нагревается газ перед входом в реактивное сопло. Скорость истечения из сопла вырастает вместе с реактивной силой, давая форсажный прирост тяги. При этом количество воздуха, проходящего через двигатель, не изменяется. Не увеличиваются обороты, и так максимальные. Но сильно, в несколько раз, возрастает расход топлива. А потому большинство самолетов способно двигаться в форсажном режиме лишь непродолжительное время. Если этот фактор не учесть, у пилота могут возникнуть большие проблемы.

Все ушло в струю

В нижнетагильском истребительном полку пара самолетов отрабатывала упражнение 108 – перехват крылатой ракеты AGM-28 Hound Dog в стратосфере. Один истребитель изображает цель, другой обнаруживает его в небе и атакует. Оба на сверхзвуке, времени мало; топлива всего три тонны, на форсаже оно горит очень быстро. Летчик нашел цель, зашел в атаку, сблизился, произвел пуск без ракеты. Из атаки вышел правильно, выпустил воздушные тормоза, доложил на командный пункт: «Форсаж убрал». Но на самом деле не убрал, видимо, забыв в горячке атаки. Час ночи. Летчик уже спустился из стратосферы, а форсаж все еще горит. Спустя время пилот докладывает: «Загорелась лампа аварийного остатка топлива». Руководитель полетов в ответ: «Продублируйте выключение форсажа». Только теперь летчик убрал форсаж и доложил второй раз о его выключении. Но топливо уже сгорело. Удаление до полосы сто сорок километров. Начались расчеты «дотянет – не дотянет», запросы текущего остатка топлива. Летчик доложил: «Двигатель встал». РП дал команду катапультироваться. Пилот покинул самолет в десятке километров от полосы. Дежурный вертолет в два часа ночи доставил на базу невредимого летчика. А советские ВВС лишились боевой машины.

Бомбардировщик Rockwell B-1 Lancer

Час ночи. Летчик уже спустился из стратосферы, а форсаж все еще горит. Спустя время пилот докладывает: «Загорелась лампа аварийного остатка топлива». Руководитель полетов в ответ: «Продублируйте выключение форсажа». Только теперь летчик убрал форсаж и доложил второй раз о его выключении. Но топливо уже сгорело. Удаление до полосы сто сорок километров.

Мифы о форсаже

Форсаж работает в полном соответствии с законами физики, однако принцип его действия вовсе не очевиден, и зачастую предлагаемые трактовки оказываются ошибочными. Что же там происходит? Поток воздуха в воздухозаборник на форсаже не вырастает. Может быть, дело в том, что добавляется объем новых продуктов сгорания? Посчитаем. При сжигании 1 кг керосина расходуется 2,7 м3 кислорода, возникает 2,6 м3 углекислого газа и водяного пара. Баланс объема отрицательный. Сжигание форсажного керосина слегка сократит объем газов. Расход массы на входе в сопло вырастет за счет керосина лишь на несколько процентов. Двигатель всасывает больше центнера воздуха в секунду. Несколько килограммов форсажного керосина увеличат эту массу незначительно. Почему же так сильно растет скорость форсажной струи?

Читайте так же:
Как сделать подмотку электронного спидометра своими руками

Ответ напрашивается сам собой: из-за роста давления перед входом в сопло! Сгорание топлива в камере нагревает газ, повышает его давление, из-за чего и возникает форсажный прирост тяги. Однако сколь ни распространено это доступное объяснение, оно в корне неверно. Все движение в авиационном турбореактивном двигателе создает его сердце – газовая турбина. Она вращает компрессор – легкие двигателя, выполняющие огромное, многократное сжатие центнера воздуха в секунду и дающее движение всем другим устройствам. Турбина выполняет колоссальную работу. Для этого ее с большой силой обтекает газ. На каждой ее лопатке он создает силу, слагающую мощность турбины. Течь газ заставляет перепад давлений. Перепад большой, в несколько атмосфер, или в два-три раза. Если разность давлений уменьшить, течение газа сквозь турбину ослабеет. Падение силы на лопатках вызовет потерю мощности. На снижение мощности сразу отзовется компрессор, уменьшит сжатие сотни кубов воздуха в секунду. Воздух сожмется слабее, меньше накачается в двигатель. Давление газа перед турбиной снизится. Так от компрессора отразится и придет к передней стороне турбины волна обвального падения мощности. Ослабеет сжатие в камерах сгорания перед турбиной. После неустойчивого горения они погаснут. Двигатель встанет.

Розжиг форсажа

Механика с гидравликой

К такому сценарию приведет снижение перепада давлений. Турбина выходит своим газодинамическим тылом прямо в форсажную камеру. Даже небольшое повышение давления в камере сразу подступит к лопаткам турбины. Перепад ослабнет, мощность турбины снизится.

Чтобы давление за турбиной не нарастало, применяется хитрая механика. Сброс добавочного температурного расширения газа достигается за счет расширения самой узкой проточной части сопла. Эта сужающаяся часть образована литыми подвижными трапециевидными створками. На двигателе Ал-31Ф от Су-27 таких створок 16. Похожие 16 створок образуют и расширяющуюся часть сопла. Створки меняют и критический диаметр сопла, и диаметр выходного среза. Управляют створками 16 гидроцилиндров, рабочим телом в которых служит топливо. При переходе на форсажный режим критическое сечение сопла расширяется и одновременно увеличивается выходное сечение. В расширение «сливается» начинающийся рост давления от форсажного нагрева.

Чтобы при розжиге форсажа не возникало случайных повышений давления в форсажной камере, сопло расширяется не синхронно с ростом форсажного горения, а заранее. Створки раскрываются с опережением форсажа. Создается ситуация, когда сопло расширилось, а форсаж еще не разгорелся. И тогда происходит классический провал тяги. Ведь в расширившееся сопло «сливается» обычное давление, пока без форсажа. На форсаже давление за пару секунд восстанавливается до прежнего, при раскрытых створках сопла.

В итоге давление в форсажной камере двигателя Ал-31Ф на форсаже не только не вырастает, но даже незначительно падает, на 0,1–0,2 атм. Перепад давления на турбине практически не меняется, и компрессор продолжает сжимать и закачивать в двигатель центнер воздуха в секунду, столь необходимого для горения топлива.

Схема двигателя

Откуда же возникает форсажный прирост тяги? Сопло – тепловой двигатель, который совершает работу, разгоняя газ с запасом энергии. Потенциальную энергию тепла и упругого сжатия газа сопло трансформирует в кинетическую энергию истекающей струи и силу тяги. В скорость истечения преобразуются и сжатие, и нагрев газа. Прибавка энергии любому из них приводит к увеличению скорости. Если добавить газу теплоты, сохраняя давление, скорость струи вырастет. Вырастет тяга и с ростом давления при неизменной температуре. В едином процессе сопло преобразует добавку любой из двух форм энергии. Поэтому нагрев газа перед соплом приводит к росту скорости струи и тяги. Так и возникает форсаж. Можно сказать, что форсажная камера – это большая керосиновая духовка. Она усиливает жар, раскаляя поток перед соплом до тысячи семисот градусов. В этом весь ее смысл. Сопло, как шляпа волшебника, прямым действием превращает жар в добавочную силу.

Остается взглянуть на форсажную струю. Цвет ее зависит от полноты сгорания. Голубой, белый, розоватый, желтый. Пыль в воздухе может менять оттенки огня. Сверхзвуковая струя, покидая сопло, тормозится до дозвуковой скорости. В струе возникает ряд сверхзвуковых скачков уплотнения. Они стоят друг за другом светлыми пятнами, делая струю визуально полосатой. С удалением от сопла пятен больше: струя тормозится, скачки сближаются, пока не исчезают. Как позже и сама струя, с грохотом уносящая самолет и затихающая в небе.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector