Мгновенная скорость
Мгновенная скорость
При рассмотрении неравномерного движения часто интересует не средняя скорость движения тела, а скорость в определенный момент времени, или мгновенная скорость. Так, если тело стукнулось о препятствие, то сила воздействия тела на препятствие в момент удара, определено скоростью в момент соударения, а не средней скоростью движения тела. Форма траектории перемещения снаряда и его дальность полета зависит от скорости в момент запуска, а не от средней скорости.
Средняя скорость ($leftlangle vrightrangle $) движения материальной точки по оси X равна:
[leftlangle vrightrangle =frac
$Delta t$ — промежуток времени движения тела.
Мгновенную скорость определим как предел к которому стремится средняя скорость за бесконечно малый промежуток времени:
Такой предел в математике называют производной:
Выражение (3) обозначает, что мгновенная скорость (скорость в определенный момент времени) — производная от координаты. При прямолинейном движении материальной точки Мгновенную скорость можно определить как производную от пути ($s$) по времени:
Мгновенная и средняя скорость
В этом параграфе мы будем рассматривать неравномерное движение. Однако при этом нам пригодится то, что мы знаем о прямолинейном равномерном движении.
На рисунке 4.1 показаны положения разгоняющегося автомобиля на прямом шоссе с интервалом времени 1 с. Стрелка указывает на зеркальце заднего вида, положение которого мы рассмотрим далее более подробно.
Мы видим, что за равные интервалы времени автомобиль проходит разные пути, то есть движется неравномерно.
Чтобы не загромождать рисунок 4.2, на нем изображены только два положения автомобиля с промежутком времени 0,5 с. Последовательные положения автомобиля с интервалом 0,05 с отмечены положением его зеркальца заднего вида (показано красным цветом).
Мы видим, что когда последовательные равные промежутки времени достаточно малы, то пути,
Оказывается, этим замечательным свойством обладает любое движение (даже криволинейное): если рассматривать его за достаточно малый промежуток времени Δt, оно очень похоже на прямолинейное равномерное движение! Причем чем меньше промежуток времени, тем больше это сходство.
Скорость тела за достаточно малый промежуток времени и называют его скоростью в данный момент времени t, если этот момент времени находится в промежутке Δt. А более точное ее название — мгновенная скорость.
Насколько малым должен быть промежуток времени Δt, чтобы в течение этого промежутка движение тела можно было считать прямолинейным равномерным, зависит от характера движения тела.
В случае разгона автомобиля это доли секунды. А, например, движение Земли вокруг Солнца можно с хорошей точностью считать прямолинейным и равномерным даже в течение суток, хотя Земля за это время пролетает в космосе больше двух с половиной миллионов километров!
Говоря далее о скорости, мы будем (если это особо не оговорено) подразумевать обычно мгновенную скорость.
? 1. По рисунку 4.2 определите мгновенную скорость автомобиля. Длину автомобиля примите равной 5 м.
Значение мгновенной скорости автомобиля показывает спидометр (рис. 4.3).
Как найти мгновенную скорость по графику зависимости координаты от времени
На рисунке 4.4 изображен график зависимости координаты от времени для автомобиля, который движется по прямолинейному шоссе.
Мы видим, что он движется неравномерно, потому что график зависимости его координаты от времени — это кривая, а не отрезок прямой.
Покажем, как определить по этому графику мгновенную скорость автомобиля в какой-либо момент времени — скажем, при t = 3 с (точка на графике).
Для этого рассмотрим движение автомобиля за столь малый промежуток времени, в течение которого его движение можно считать прямолинейным равномерным.
На рисунке 4.5 показан интересующий нас участок графика при десятикратном увеличении (см., например, шкалу времени).
Мы видим, что этот участок графика практически неотличим от отрезка прямой (красный отрезок). За последовательные равные промежутки времени по 0,1 с автомобиль проходит практически одинаковые расстояния — по 1 м.
2. Чему равна мгновенная скорость автомобиля в момент t = 3 с?
Возвращаясь к прежнему масштабу чертежа, мы увидим, что прямая красного цвета, с которой практически совпадал малый участок графика, — касательная к графику зависимости координаты от времени в данный момент времени (рис. 4.6).
Итак, о мгновенной скорости тела можно судить по угловому коэффициенту касательной к графику зависимости координаты от времени: чем больше угловой коэффициент касательной, тем больше скорость тела. (Описанный способ определения мгновенной скорости с помощью касательной к графику зависимости координаты от времени связан с понятием производной функции. Это понятие вы будете изучать в курсе «Алгебра и начала аиализа».) А в тех точках графика, где угол наклона касательной равен нулю, то есть касательная параллельна оси времени t, мгновенная скорость тела равна нулю.
? 3. Рассмотрите рисунок 4.6. а) В каких точках графика угол наклона касательной наибольший? наименьший? б) Найдите наибольшую и наименьшую мгновенную скорость автомобиля в течение первых 6 с его движения.
2. Средняя скорость
Во многих задачах используют среднюю скорость, связанную с пройденным путем:
Определенная таким образом средняя скорость является скалярной величиной, так как путь — это скалярная величина. (Иногда во избежание недоразумений ее называют средней путевой скоростью.)
Например, если автомобиль в течение трех часов проехал по городу 120 км (при этом он мог разгоняться, тормозить и стоять на перекрестках), то его средняя скорость равна 40 км/ч.
? 4. Насколько уменьшится средняя скорость только что упомянутого автомобиля, если из-за остановок в пробках общее время движения увеличится на 1 ч?
Средняя скорость на двух участках движения
Во многих задачах рассматривается движение тела на двух участках, на каждом из которых движение можно считать равномерным. В таком случае, согласно определению средней скорости (1), можно записать:
Vср = (l1 + l2)/(t1 + t2), (2)
Где l1 и t1 — путь и время для первого участка, а l2 и t2 — для второго. Рассмотрим примеры. Саша выехал из поселка на велосипеде со скоростью 15 км/ч и ехал в течение часа.
А потом велосипед сломался, и Саша еще час шел пешком со скоростью 5 км/ч.
? 5. Найдите: а) путь, пройденный Сашей за все время движения; б) общее время движения Саши; в) среднюю скорость Саши.
В рассмотренном случае средняя скорость оказалась равной среднему арифметическому скоростей, с которыми Саша ехал и шел. Всегда ли это справедливо? Рассмотрим следующий пример.
Пусть Саша ехал на велосипеде в течение часа со скоростью 15 км/ч, а потом прошел такое же расстояние пешком со скоростью 5 км/ч.
? 6. Найдите: а) путь, который Саша прошел пешком; б) путь, пройденный Сашей за все время движения; в) общее время движения Саши; б) среднюю скорость Саши.
Рассмотрев этот случай, вы увидите, что на этот раз средняя скорость не равна среднему арифметическому скоростей езды и ходьбы. А если присмотреться еще внимательнее, то можно заметить, что во втором случае средняя скорость меньше, чем в первом. Почему?
? 7. Сравните промежутки времени, в течение которых Саша ехал и шел пешком в первом и втором случаях.
Обобщим рассмотренные выше ситуации.
Рассмотрим сначала случай, когда тело двигалось с разными скоростями в течение равных промежутков времени.
Пусть первую половину всего времени движения тело двигалось со скоростью v1, а вторую половину — со скоростью v2. Можно ли найти среднюю скорость движения на всем участке, если не известны ни общее время движения, ни путь, пройденный телом за все время движения?
Можно: для этого введем обозначения для всех нужных нам величин независимо от того, известны они или неизвестны. Это распространенный прием при решении многих задач.
Обозначим все время движения t, весь путь l, а пути, пройденные за первую и вторую половину времени движения, обозначим соответственно) l1 и l2.
? 8. Выразите через v1, v2 и t: a) l1 и l2; б) l; в) среднюю скорость.
Найдя ответы на эти вопросы, вы узнаете, справедливо ли в общем случае утверждение: если тело двигалось на двух участках с разными скоростями в течение равных промежутков времени, то его средняя скорость на всем пути равна среднему арифметическому скоростей движения на двух участках.
Рассмотрим теперь случай, когда тело двигалось с разными скоростями первую и вторую половину пути.
Пусть теперь первую половину всего пути тело двигалось со скоростью v1, а вторую половину — со скоростью v2. Обозначим снова все время движения t, весь путь l, а промежутки времени, в течение которых тело двигалось на первом и втором участке, обозначим соответственно t1 и t2.
? 9. Выразите через v1, v2 и l: а) t1 и t2; б) t; в) среднюю скорость.
Ответив на эти вопросы, вы узнаете, справедливо ли в общем случае утверждение: если тело двигалось на двух участках равной длины с разными скоростями, то его средняя скорость на всем пути не равна среднему арифметическому этих скоростей.
? 10. Докажите, что средняя скорость тела, которое двигалось на двух участках равной длины с разными скоростями, меньше, чем если бы оно двигалось на двух участках с теми же скоростями в течение равных промежутков времени. Подсказка.
Выразите для каждого из двух случаев среднюю скорость через скорости на первом и втором участках и сравните полученные выражения.
? 11. На первом участке пути тело двигалось со скоростью v1, а на втором — со скоростью v2. Чему равно отношение длин этих участков, если средняя скорость движения оказалась равной среднему арифметическому v1 и v2?
Дополнительные вопросы и задания
12. Одну треть всего времени движения поезд ехал со скоростью v1, а оставшееся время — со скоростью v2. а) Выразите пройденный поездом путь через v1, v2 и все время движения t. б) Выразите среднюю скорость поезда через v1 и v2. в) Найдите числовое значение средней скорости при v1 = 60 км/ч, v2 = 90 км/ч.
13. Автомобиль ехал три четверти всего пути со скоростью v1, а оставшийся участок пути — со скоростью v2. а) Выразите все время движения автомобиля через v1, v2 и весь пройденный путь l. б) Выразите среднюю скорость движения автомобиля через v1 и v2. в) Найдите числовое значение средней скорости при v1 = 80 км/ч, v2 = 100 км/ч.
14. Автомобиль ехал 2 ч со скоростью 60 км/ч. Сколько времени после этого он должен ехать со скоростью 80 км/ч, чтобы его средняя скорость на всем пути стала равной 66,7 км/ч?
15. Перенесите в тетрадь (по клеточкам) график зависимости координаты автомобиля от времени, изображенный на рисунке 4.4. Считайте, что автомобиль едет вдоль оси x. а) Определите графически среднюю скорость за 6 с. б) Используя касательную, определите, в какие примерно моменты времени мгновенная скорость автомобиля была равна его средней скорости за 6 с.
16. Тело движется вдоль оси x. Зависимость координаты тела от времени выражается формулой x = 0,2 * t2. а) Выберите удобный масштаб и изобразите график зависимости x(t) в течение первых 6 с. б) С помощью этого графика найдите момент времени, в который мгновенная скорость тела была равна средней скорости за все время движения.
Уравнение движения
Основной задачей механики является определение положения тела в данный момент времени. Для решения этой задачи помогает уравнение движения, то есть зависимость координаты тела от времени х = х(t).
Уравнение движения
x(t) = x0 + vxt
x(t) — искомая координата [м]
x0 — начальная координата [м]
vx — скорость тела в данный момент времени [м/с]
t — момент времени [с]
Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v < 0), и тогда уравнение движения принимает вид:
Уравнение движения при движении против оси
x(t) = x0 — vxt
x(t) — искомая координата [м]
x0 — начальная координата [м]
vx — скорость тела в данный момент времени [м/с]
t — момент времени [с]
Мгновенная скорость при равноускоренном движении
Мгновенную скорость при равноускоренном движении можно найти из формулы ускорения, перенеся все известные величины в правую часть:
$overrightarrow v = overrightarrow v_0 + overrightarrow a t$
Это основная формула скорости при равноускоренном движении.
В случае прямолинейного движения все векторы направлены вдоль одной прямой, модули проекций равны модулям векторов. В случае движения на плоскости – необходимо рассматривать проекции на каждую ось.
Неравномерное движение. Средняя скорость. Мгновенная скорость
Все эти три вида движения не являются равномерными, то есть изменяется скорость. На этом уроке мы рассмотрим неравномерное движение.
Неравномерное движение
Неравномерным называется движение, при котором тело за равные промежутки времени проходит неравные пути.
Основная задача механики – определить положение тела в любой момент времени. При неравномерном движении скорость тела меняется, следовательно, необходимо научиться описывать изменение скорости тела. Для этого вводятся два понятия: средняя скорость и мгновенная скорость.
Средняя скорость
Факт изменения скорости тела при неравномерном движении не всегда необходимо учитывать, при рассмотрении движении тела на большом участке пути в целом (нам не важна скорость в каждый момент времени) удобно ввести понятие средней скорости.
Средней скоростью называют отношение полного перемещения, которое совершило тело, ко времени, за которое совершено это перемещение.
На практике чаще всего используется понятие средней путевой скорости.
Средняя путевая скорость – это отношение полного пути, пройденного телом, ко времени, за которое путь пройден.
Существует ещё одно определение средней скорости.
Средняя скорость – это та скорость, с которой должно двигаться тело равномерно, чтобы пройти данное расстояние за то же время, за которое оно его прошло, двигаясь неравномерно.
Из курса математики нам известно, что такое среднее арифметическое. Для чисел 10 и 36 оно будет равно:
Для того чтобы узнать возможность использования этой формулы для нахождения средней скорости, решим следующую задачу.
Велосипедист поднимается со скоростью 10 км/ч на склон, затрачивая на это 0,5 часа. Далее со скоростью 36 км/ч спускается вниз за 10 минут. Найдите среднюю скорость велосипедиста (см. Рис. 4).
Дано: ;
;
;
Найти:
Рис. 4. Иллюстрация к задаче
Так как единица измерения данных скоростей – км/ч, то и среднюю скорость найдём в км/ч. Следовательно, данные задачи не будем переводить в СИ. Переведём в часы.
Средняя скорость равна:
Полный путь ( ) состоит из пути подъёма на склон (
) и спуска со склона (
):
Путь подъёма на склон равен:
Путь спуска со склона равен:
Время, за которое пройден полный путь, равно:
Ответ:
Исходя из ответа задачи, видим, что применять формулу среднего арифметического для вычисления средней скорости нельзя.
Мгновенная скорость
Среднюю скорость, измеренную за бесконечно малый промежуток времени, называют мгновенной скоростью тела (для примера, спидометр автомобиля показывает мгновенную скорость).
Существует ещё одно определение мгновенной скорости.
Мгновенная скорость – скорость движения тела в данный момент времени, скорость тела в данной точке траектории.
Для того чтобы лучше понять данное определение, рассмотрим пример.
Пусть автомобиль движется прямолинейно по участку шоссе. У нас есть график зависимости проекции перемещения от времени для данного движения (см. Рис. 5), проанализируем данный график.
На графике видно, что скорость автомобиля не постоянная. Допустим, необходимо найти мгновенную скорость автомобиля через 30 секунд после начала наблюдения (в точке A). Пользуясь определением мгновенной скорости, найдём модуль средней скорости за промежуток времени от до
. Для этого рассмотрим фрагмент данного графика (см. Рис. 6).
Рис. 5. График зависимости проекции перемещения от времени
Рис. 6. График зависимости проекции перемещения от времени
Рассчитываем среднюю скорость на данном участке времени:
Для того чтобы проверить правильность нахождения мгновенной скорости, найдём модуль средней скорости за промежуток времени от до
, для этого рассмотрим фрагмент графика (см. Рис. 7).
Рис. 7. График зависимости проекции перемещения от времени
Рассчитываем среднюю скорость на данном участке времени:
Получили два значения мгновенной скорости автомобиля через 30 секунд после начала наблюдения. Точнее будет то значение, где интервал времени меньше, то есть . Если уменьшать рассматриваемый интервал времени сильнее, то мгновенная скорость автомобиля в точке A будет определяться более точно.
Мгновенная скорость – это векторная величина. Поэтому, кроме её нахождения (нахождения её модуля), необходимо знать, как она направлена.
( при
) – мгновенная скорость
Направление мгновенной скорости совпадает с направлением перемещения тела.
Если тело движется криволинейно, то мгновенная скорость направлена по касательной к точке траектории (см. Рис. 8).
Рис. 8. Направление мгновенной скорости
Задания для усвоения понятия мгновенная скорость
Может ли мгновенная скорость () изменяться только по направлению, не изменяясь по модулю?
Для решения рассмотрим следующий пример. Тело движется по криволинейной траектории (см. Рис. 9). Отметим на траектории движения точку A и точку B. Отметим направление мгновенной скорости в этих точках (мгновенная скорость направлена по касательной к точке траектории). Пусть скорости и
одинаковы по модулю и равны 5 м/с.
Рис. 9. Иллюстрация к заданию
Написать, что нельзя. Скорость – векторная величина, то есть важно не только числовое значение, но и направление.
Если бы , то можно было бы записать, что
, но, найдя вектор разности
, видим, что он не равен 0 (см. Рис. 10). Следовательно,
, то есть мгновенная скорость может быть равна по модулю, но отличаться по направлению.
Может ли мгновенная скорость меняться только по модулю, не меняясь по направлению?
Рис. 10. Иллюстрация к заданию
На рисунке 10 видно, что в точке A и в точке B мгновенная скорость направлена одинаково. Если тело движется равноускоренно, то .
Вариант 3
1. Равномерным является движение:
А. автобуса, выполняющего рейс внутри города
Б. ракеты после старта
В. ленты транспортёра
Г. яблока, падающего с дерева
2. Человек проехал на велосипеде 5 км за 15 мин, а следующие 2,5 км — за 10 мин. Средняя скорость движения на всём пути равна:
А. 2,5 м/с
Б. 5 м/с
В. 12,5 м/с
Г. 25 м/с
3. Автомобиль трогается с места с ускорением, график зависимости которого от времени представлен на рисунке. Скорость автомобиля через 5 с равна:
А. 3/5 м/с
Б. 3 м/с
В. 5 м/с
Г. 15 м/с
4. На рисунке представлены графики зависимости скорости трёх тел от времени движения. Определите, какие тела двигались равноускоренно.
А. только 1
Б. только 2
В. только 3
Г. 1 и 3
5. На рисунке представлены графики зависимости скорости двух тел от времени движения. Определите начальные скорости этих тел.
6. По графику, представленному в предыдущем задании, определите ускорения тел.
А. а1 = 2 м/с 2 , а2 = 4 м/с 2
Б. а1 = 1 м/с 2 , а2 = 2 м/с 2
В. а1 = 1 м/с 2 , а2 = 1 м/с 2
Г. а1 = 0,5 м/с 2 , а2 = 2 м/с 2
7. Чему равно ускорение тела, если за 0,5 мин его скорость увеличилась от 5 до 20 м/с? Через какое время после на чала наблюдения тело приобретёт скорость 25 м/с?
8. Постройте график зависимости скорости движения тела от времени по условию задачи 7.
Автор: Павел Чайка, главный редактор журнала Познавайка
При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.
Похожие посты:
Один комментарий
V=Vo+at. Какое V? Их несколько: V нач., V кон., V средняя, V мгновенная…
Просто V-это, имеется в виду, -V ср. Любое V, если это равномерное движение, V нач.=V кон. есть СРЕДНЯЯ скорость. (у “яблока…”) 9,8…=2at. V нач. НЕ РАВНО V кон. По этому искать ускорение надо из средней скорости (не впутывая “интегралы”) . При равно-ускоренном движении V кон=2V нач. Скорость at-это средняя скорость-S/t. Она=(v+V)/2 S=..*t
9,8..=2at. t=1. a=4,9 м/сек.сек. S=(0+2at)/2*t. S=att. a=S/tt. 4,9/1/1=4,9 м/сек.сек.
V ср.=at. 4,9/1=4,9 м/сек.сек.
“Если “что-то”, имеющее вес (массу) прошло путь S за время t- ускорения S/tt и F/m- РАВНЫ ! S/tt=F/m. S,t,m можно измерить. Задача: найти F ! Ньютон пытался вывести эту формулу, но /2 мешало…
S=V ср*t=at*t=(v+V)/2*t=F/m*tt=S/tt*t…
V=vo+at-это СРЕДНЯЯ скорость, с нач. скоростью больше 0. *t=S
График движения НЕ имеет значения ни для средней скорости,ни для ускорения, т.к. ускорение-это ЭНЕРГИЯ движения, равная изменению скорости и измеряющаяся м/сек.сек. V,t ,S ,F,m “связаны” между собой. Их “объединяет” “а”-ускорение.
….инженерам задание: m автомобиля- не более 1500 кг. разгон до сотни- не более 8 сек. Какой мощности нужен мотор?. (КПД любого бензинового ДВС=16%)
V ср./t=F/m. 13,9/8=F/1500. F=2606 кг.м./с. Это при 100% КПД=34,75 л.с. 34,75*6,25=217 л.с S=att/2-ошибка ! S=att. S=vo*t+att/2 – НЕ верное решение ! S=Vot+att. Результат-другой !
И искать ускорение : (V-v)/t-НЕЛЬЗЯ ! a=(v+V)/2t.